quinta-feira, 9 de agosto de 2012

Global Warming's Terrifying New Math

Three simple numbers that add up to global catastrophe - and that make clear who the real enemy is

July 19, 2012 9:35 AM ET
 
If the pictures of those towering wildfires in Colorado haven't convinced you, or the size of your AC bill this summer, here are some hard numbers about climate change: June broke or tied 3,215 high-temperature records across the United States. That followed the warmest May on record for the Northern Hemisphere – the 327th consecutive month in which the temperature of the entire globe exceeded the 20th-century average, the odds of which occurring by simple chance were 3.7 x 10-99, a number considerably larger than the number of stars in the universe.
 
Meteorologists reported that this spring was the warmest ever recorded for our nation – in fact, it crushed the old record by so much that it represented the "largest temperature departure from average of any season on record." The same week, Saudi authorities reported that it had rained in Mecca despite a temperature of 109 degrees, the hottest downpour in the planet's history.

Not that our leaders seemed to notice. Last month the world's nations, meeting in Rio for the 20th-anniversary reprise of a massive 1992 environmental summit, accomplished nothing. Unlike George H.W. Bush, who flew in for the first conclave, Barack Obama didn't even attend. It was "a ghost of the glad, confident meeting 20 years ago," the British journalist George Monbiot wrote; no one paid it much attention, footsteps echoing through the halls "once thronged by multitudes." Since I wrote one of the first books for a general audience about global warming way back in 1989, and since I've spent the intervening decades working ineffectively to slow that warming, I can say with some confidence that we're losing the fight, badly and quickly – losing it because, most of all, we remain in denial about the peril that human civilization is in.

When we think about global warming at all, the arguments tend to be ideological, theological and economic. But to grasp the seriousness of our predicament, you just need to do a little math. For the past year, an easy and powerful bit of arithmetical analysis first published by financial analysts in the U.K. has been making the rounds of environmental conferences and journals, but it hasn't yet broken through to the larger public. This analysis upends most of the conventional political thinking about climate change. And it allows us to understand our precarious – our almost-but-not-quite-finally hopeless – position with three simple numbers.

The First Number: 2° Celsius

If the movie had ended in Hollywood fashion, the Copenhagen climate conference in 2009 would have marked the culmination of the global fight to slow a changing climate. The world's nations had gathered in the December gloom of the Danish capital for what a leading climate economist, Sir Nicholas Stern of Britain, called the "most important gathering since the Second World War, given what is at stake." As Danish energy minister Connie Hedegaard, who presided over the conference, declared at the time: "This is our chance. If we miss it, it could take years before we get a new and better one. If ever."

In the event, of course, we missed it. Copenhagen failed spectacularly. Neither China nor the United States, which between them are responsible for 40 percent of global carbon emissions, was prepared to offer dramatic concessions, and so the conference drifted aimlessly for two weeks until world leaders jetted in for the final day. Amid considerable chaos, President Obama took the lead in drafting a face-saving "Copenhagen Accord" that fooled very few. Its purely voluntary agreements committed no one to anything, and even if countries signaled their intentions to cut carbon emissions, there was no enforcement mechanism. "Copenhagen is a crime scene tonight," an angry Greenpeace official declared, "with the guilty men and women fleeing to the airport." Headline writers were equally brutal: COPENHAGEN: THE MUNICH OF OUR TIMES? asked one.

The accord did contain one important number, however. In Paragraph 1, it formally recognized "the scientific view that the increase in global temperature should be below two degrees Celsius." And in the very next paragraph, it declared that "we agree that deep cuts in global emissions are required... so as to hold the increase in global temperature below two degrees Celsius." By insisting on two degrees – about 3.6 degrees Fahrenheit – the accord ratified positions taken earlier in 2009 by the G8, and the so-called Major Economies Forum. It was as conventional as conventional wisdom gets. The number first gained prominence, in fact, at a 1995 climate conference chaired by Angela Merkel, then the German minister of the environment and now the center-right chancellor of the nation.

Some context: So far, we've raised the average temperature of the planet just under 0.8 degrees Celsius, and that has caused far more damage than most scientists expected. (A third of summer sea ice in the Arctic is gone, the oceans are 30 percent more acidic, and since warm air holds more water vapor than cold, the atmosphere over the oceans is a shocking five percent wetter, loading the dice for devastating floods.) Given those impacts, in fact, many scientists have come to think that two degrees is far too lenient a target. "Any number much above one degree involves a gamble," writes Kerry Emanuel of MIT, a leading authority on hurricanes, "and the odds become less and less favorable as the temperature goes up." Thomas Lovejoy, once the World Bank's chief biodiversity adviser, puts it like this: "If we're seeing what we're seeing today at 0.8 degrees Celsius, two degrees is simply too much." NASA scientist James Hansen, the planet's most prominent climatologist, is even blunter: "The target that has been talked about in international negotiations for two degrees of warming is actually a prescription for long-term disaster." At the Copenhagen summit, a spokesman for small island nations warned that many would not survive a two-degree rise: "Some countries will flat-out disappear." When delegates from developing nations were warned that two degrees would represent a "suicide pact" for drought-stricken Africa, many of them started chanting, "One degree, one Africa."
Despite such well-founded misgivings, political realism bested scientific data, and the world settled on the two-degree target – indeed, it's fair to say that it's the only thing about climate change the world has settled on. All told, 167 countries responsible for more than 87 percent of the world's carbon emissions have signed on to the Copenhagen Accord, endorsing the two-degree target. Only a few dozen countries have rejected it, including Kuwait, Nicaragua and Venezuela. Even the United Arab Emirates, which makes most of its money exporting oil and gas, signed on. The official position of planet Earth at the moment is that we can't raise the temperature more than two degrees Celsius – it's become the bottomest of bottom lines. Two degrees.

The Second Number: 565 Gigatons

Scientists estimate that humans can pour roughly 565 more gigatons of carbon dioxide into the atmosphere by midcentury and still have some reasonable hope of staying below two degrees. ("Reasonable," in this case, means four chances in five, or somewhat worse odds than playing Russian roulette with a six-shooter.)

This idea of a global "carbon budget" emerged about a decade ago, as scientists began to calculate how much oil, coal and gas could still safely be burned. Since we've increased the Earth's temperature by 0.8 degrees so far, we're currently less than halfway to the target. But, in fact, computer models calculate that even if we stopped increasing CO2 now, the temperature would likely still rise another 0.8 degrees, as previously released carbon continues to overheat the atmosphere. That means we're already three-quarters of the way to the two-degree target.
How good are these numbers? No one is insisting that they're exact, but few dispute that they're generally right. The 565-gigaton figure was derived from one of the most sophisticated computer-simulation models that have been built by climate scientists around the world over the past few decades. And the number is being further confirmed by the latest climate-simulation models currently being finalized in advance of the next report by the Intergovernmental Panel on Climate Change. "Looking at them as they come in, they hardly differ at all," says Tom Wigley, an Australian climatologist at the National Center for Atmospheric Research. "There's maybe 40 models in the data set now, compared with 20 before. But so far the numbers are pretty much the same. We're just fine-tuning things. I don't think much has changed over the last decade." William Collins, a senior climate scientist at the Lawrence Berkeley National Laboratory, agrees. "I think the results of this round of simulations will be quite similar," he says. "We're not getting any free lunch from additional understanding of the climate system."

We're not getting any free lunch from the world's economies, either. With only a single year's lull in 2009 at the height of the financial crisis, we've continued to pour record amounts of carbon into the atmosphere, year after year. In late May, the International Energy Agency published its latest figures – CO2 emissions last year rose to 31.6 gigatons, up 3.2 percent from the year before. America had a warm winter and converted more coal-fired power plants to natural gas, so its emissions fell slightly; China kept booming, so its carbon output (which recently surpassed the U.S.) rose 9.3 percent; the Japanese shut down their fleet of nukes post-Fukushima, so their emissions edged up 2.4 percent. "There have been efforts to use more renewable energy and improve energy efficiency," said Corinne Le Quéré, who runs England's Tyndall Centre for Climate Change Research. "But what this shows is that so far the effects have been marginal." In fact, study after study predicts that carbon emissions will keep growing by roughly three percent a year – and at that rate, we'll blow through our 565-gigaton allowance in 16 years, around the time today's preschoolers will be graduating from high school. "The new data provide further evidence that the door to a two-degree trajectory is about to close," said Fatih Birol, the IEA's chief economist. In fact, he continued, "When I look at this data, the trend is perfectly in line with a temperature increase of about six degrees." That's almost 11 degrees Fahrenheit, which would create a planet straight out of science fiction.

So, new data in hand, everyone at the Rio conference renewed their ritual calls for serious international action to move us back to a two-degree trajectory. The charade will continue in November, when the next Conference of the Parties (COP) of the U.N. Framework Convention on Climate Change convenes in Qatar. This will be COP 18 – COP 1 was held in Berlin in 1995, and since then the process has accomplished essentially nothing. Even scientists, who are notoriously reluctant to speak out, are slowly overcoming their natural preference to simply provide data. "The message has been consistent for close to 30 years now," Collins says with a wry laugh, "and we have the instrumentation and the computer power required to present the evidence in detail. If we choose to continue on our present course of action, it should be done with a full evaluation of the evidence the scientific community has presented." He pauses, suddenly conscious of being on the record. "I should say, a fuller evaluation of the evidence."

So far, though, such calls have had little effect. We're in the same position we've been in for a quarter-century: scientific warning followed by political inaction. Among scientists speaking off the record, disgusted candor is the rule. One senior scientist told me, "You know those new cigarette packs, where governments make them put a picture of someone with a hole in their throats? Gas pumps should have something like that."

The Third Number: 2,795 Gigatons

This number is the scariest of all – one that, for the first time, meshes the political and scientific dimensions of our dilemma. It was highlighted last summer by the Carbon Tracker Initiative, a team of London financial analysts and environmentalists who published a report in an effort to educate investors about the possible risks that climate change poses to their stock portfolios. The number describes the amount of carbon already contained in the proven coal and oil and gas reserves of the fossil-fuel companies, and the countries (think Venezuela or Kuwait) that act like fossil-fuel companies. In short, it's the fossil fuel we're currently planning to burn. And the key point is that this new number – 2,795 – is higher than 565. Five times higher.
The Carbon Tracker Initiative – led by James Leaton, an environmentalist who served as an adviser at the accounting giant PricewaterhouseCoopers – combed through proprietary databases to figure out how much oil, gas and coal the world's major energy companies hold in reserve. The numbers aren't perfect – they don't fully reflect the recent surge in unconventional energy sources like shale gas, and they don't accurately reflect coal reserves, which are subject to less stringent reporting requirements than oil and gas. But for the biggest companies, the figures are quite exact: If you burned everything in the inventories of Russia's Lukoil and America's ExxonMobil, for instance, which lead the list of oil and gas companies, each would release more than 40 gigatons of carbon dioxide into the atmosphere.

Which is exactly why this new number, 2,795 gigatons, is such a big deal. Think of two degrees Celsius as the legal drinking limit – equivalent to the 0.08 blood-alcohol level below which you might get away with driving home. The 565 gigatons is how many drinks you could have and still stay below that limit – the six beers, say, you might consume in an evening. And the 2,795 gigatons? That's the three 12-packs the fossil-fuel industry has on the table, already opened and ready to pour.
We have five times as much oil and coal and gas on the books as climate scientists think is safe to burn. We'd have to keep 80 percent of those reserves locked away underground to avoid that fate. Before we knew those numbers, our fate had been likely. Now, barring some massive intervention, it seems certain.

Yes, this coal and gas and oil is still technically in the soil. But it's already economically aboveground – it's figured into share prices, companies are borrowing money against it, nations are basing their budgets on the presumed returns from their patrimony. It explains why the big fossil-fuel companies have fought so hard to prevent the regulation of carbon dioxide – those reserves are their primary asset, the holding that gives their companies their value. It's why they've worked so hard these past years to figure out how to unlock the oil in Canada's tar sands, or how to drill miles beneath the sea, or how to frack the Appalachians.

If you told Exxon or Lukoil that, in order to avoid wrecking the climate, they couldn't pump out their reserves, the value of their companies would plummet. John Fullerton, a former managing director at JP Morgan who now runs the Capital Institute, calculates that at today's market value, those 2,795 gigatons of carbon emissions are worth about $27 trillion. Which is to say, if you paid attention to the scientists and kept 80 percent of it underground, you'd be writing off $20 trillion in assets. The numbers aren't exact, of course, but that carbon bubble makes the housing bubble look small by comparison. It won't necessarily burst – we might well burn all that carbon, in which case investors will do fine. But if we do, the planet will crater. You can have a healthy fossil-fuel balance sheet, or a relatively healthy planet – but now that we know the numbers, it looks like you can't have both. Do the math: 2,795 is five times 565. That's how the story ends.

So far, as I said at the start, environmental efforts to tackle global warming have failed. The planet's emissions of carbon dioxide continue to soar, especially as developing countries emulate (and supplant) the industries of the West. Even in rich countries, small reductions in emissions offer no sign of the real break with the status quo we'd need to upend the iron logic of these three numbers. Germany is one of the only big countries that has actually tried hard to change its energy mix; on one sunny Saturday in late May, that northern-latitude nation generated nearly half its power from solar panels within its borders. That's a small miracle – and it demonstrates that we have the technology to solve our problems. But we lack the will. So far, Germany's the exception; the rule is ever more carbon.

This record of failure means we know a lot about what strategies don't work. Green groups, for instance, have spent a lot of time trying to change individual lifestyles: the iconic twisty light bulb has been installed by the millions, but so have a new generation of energy-sucking flatscreen TVs. Most of us are fundamentally ambivalent about going green: We like cheap flights to warm places, and we're certainly not going to give them up if everyone else is still taking them. Since all of us are in some way the beneficiaries of cheap fossil fuel, tackling climate change has been like trying to build a movement against yourself – it's as if the gay-rights movement had to be constructed entirely from evangelical preachers, or the abolition movement from slaveholders.

People perceive – correctly – that their individual actions will not make a decisive difference in the atmospheric concentration of CO2; by 2010, a poll found that "while recycling is widespread in America and 73 percent of those polled are paying bills online in order to save paper," only four percent had reduced their utility use and only three percent had purchased hybrid cars. Given a hundred years, you could conceivably change lifestyles enough to matter – but time is precisely what we lack.

A more efficient method, of course, would be to work through the political system, and environmentalists have tried that, too, with the same limited success. They've patiently lobbied leaders, trying to convince them of our peril and assuming that politicians would heed the warnings. Sometimes it has seemed to work. Barack Obama, for instance, campaigned more aggressively about climate change than any president before him – the night he won the nomination, he told supporters that his election would mark the moment "the rise of the oceans began to slow and the planet began to heal." And he has achieved one significant change: a steady increase in the fuel efficiency mandated for automobiles. It's the kind of measure, adopted a quarter-century ago, that would have helped enormously. But in light of the numbers I've just described, it's obviously a very small start indeed.
At this point, effective action would require actually keeping most of the carbon the fossil-fuel industry wants to burn safely in the soil, not just changing slightly the speed at which it's burned. And there the president, apparently haunted by the still-echoing cry of "Drill, baby, drill," has gone out of his way to frack and mine. His secretary of interior, for instance, opened up a huge swath of the Powder River Basin in Wyoming for coal extraction: The total basin contains some 67.5 gigatons worth of carbon (or more than 10 percent of the available atmospheric space). He's doing the same thing with Arctic and offshore drilling; in fact, as he explained on the stump in March, "You have my word that we will keep drilling everywhere we can... That's a commitment that I make." The next day, in a yard full of oil pipe in Cushing, Oklahoma, the president promised to work on wind and solar energy but, at the same time, to speed up fossil-fuel development: "Producing more oil and gas here at home has been, and will continue to be, a critical part of an all-of-the-above energy strategy." That is, he's committed to finding even more stock to add to the 2,795-gigaton inventory of unburned carbon.

Sometimes the irony is almost Borat-scale obvious: In early June, Secretary of State Hillary Clinton traveled on a Norwegian research trawler to see firsthand the growing damage from climate change. "Many of the predictions about warming in the Arctic are being surpassed by the actual data," she said, describing the sight as "sobering." But the discussions she traveled to Scandinavia to have with other foreign ministers were mostly about how to make sure Western nations get their share of the estimated $9 trillion in oil (that's more than 90 billion barrels, or 37 gigatons of carbon) that will become accessible as the Arctic ice melts. Last month, the Obama administration indicated that it would give Shell permission to start drilling in sections of the Arctic.

Almost every government with deposits of hydrocarbons straddles the same divide. Canada, for instance, is a liberal democracy renowned for its internationalism – no wonder, then, that it signed on to the Kyoto treaty, promising to cut its carbon emissions substantially by 2012. But the rising price of oil suddenly made the tar sands of Alberta economically attractive – and since, as NASA climatologist James Hansen pointed out in May, they contain as much as 240 gigatons of carbon (or almost half of the available space if we take the 565 limit seriously), that meant Canada's commitment to Kyoto was nonsense. In December, the Canadian government withdrew from the treaty before it faced fines for failing to meet its commitments.

The same kind of hypocrisy applies across the ideological board: In his speech to the Copenhagen conference, Venezuela's Hugo Chavez quoted Rosa Luxemburg, Jean-Jacques Rousseau and "Christ the Redeemer," insisting that "climate change is undoubtedly the most devastating environmental problem of this century." But the next spring, in the Simon Bolivar Hall of the state-run oil company, he signed an agreement with a consortium of international players to develop the vast Orinoco tar sands as "the most significant engine for a comprehensive development of the entire territory and Venezuelan population." The Orinoco deposits are larger than Alberta's – taken together, they'd fill up the whole available atmospheric space.

So: the paths we have tried to tackle global warming have so far produced only gradual, halting shifts. A rapid, transformative change would require building a movement, and movements require enemies. As John F. Kennedy put it, "The civil rights movement should thank God for Bull Connor. He's helped it as much as Abraham Lincoln." And enemies are what climate change has lacked.

But what all these climate numbers make painfully, usefully clear is that the planet does indeed have an enemy – one far more committed to action than governments or individuals. Given this hard math, we need to view the fossil-fuel industry in a new light. It has become a rogue industry, reckless like no other force on Earth. It is Public Enemy Number One to the survival of our planetary civilization. "Lots of companies do rotten things in the course of their business – pay terrible wages, make people work in sweatshops – and we pressure them to change those practices," says veteran anti-corporate leader Naomi Klein, who is at work on a book about the climate crisis. "But these numbers make clear that with the fossil-fuel industry, wrecking the planet is their business model. It's what they do."

According to the Carbon Tracker report, if Exxon burns its current reserves, it would use up more than seven percent of the available atmospheric space between us and the risk of two degrees. BP is just behind, followed by the Russian firm Gazprom, then Chevron, ConocoPhillips and Shell, each of which would fill between three and four percent. Taken together, just these six firms, of the 200 listed in the Carbon Tracker report, would use up more than a quarter of the remaining two-degree budget. Severstal, the Russian mining giant, leads the list of coal companies, followed by firms like BHP Billiton and Peabody. The numbers are simply staggering – this industry, and this industry alone, holds the power to change the physics and chemistry of our planet, and they're planning to use it.
They're clearly cognizant of global warming – they employ some of the world's best scientists, after all, and they're bidding on all those oil leases made possible by the staggering melt of Arctic ice. And yet they relentlessly search for more hydrocarbons – in early March, Exxon CEO Rex Tillerson told Wall Street analysts that the company plans to spend $37 billion a year through 2016 (about $100 million a day) searching for yet more oil and gas.

There's not a more reckless man on the planet than Tillerson. Late last month, on the same day the Colorado fires reached their height, he told a New York audience that global warming is real, but dismissed it as an "engineering problem" that has "engineering solutions." Such as? "Changes to weather patterns that move crop-production areas around – we'll adapt to that." This in a week when Kentucky farmers were reporting that corn kernels were "aborting" in record heat, threatening a spike in global food prices. "The fear factor that people want to throw out there to say, 'We just have to stop this,' I do not accept," Tillerson said. Of course not – if he did accept it, he'd have to keep his reserves in the ground. Which would cost him money. It's not an engineering problem, in other words – it's a greed problem.

You could argue that this is simply in the nature of these companies – that having found a profitable vein, they're compelled to keep mining it, more like efficient automatons than people with free will. But as the Supreme Court has made clear, they are people of a sort. In fact, thanks to the size of its bankroll, the fossil-fuel industry has far more free will than the rest of us. These companies don't simply exist in a world whose hungers they fulfill – they help create the boundaries of that world.
Left to our own devices, citizens might decide to regulate carbon and stop short of the brink; according to a recent poll, nearly two-thirds of Americans would back an international agreement that cut carbon emissions 90 percent by 2050. But we aren't left to our own devices. The Koch brothers, for instance, have a combined wealth of $50 billion, meaning they trail only Bill Gates on the list of richest Americans. They've made most of their money in hydrocarbons, they know any system to regulate carbon would cut those profits, and they reportedly plan to lavish as much as $200 million on this year's elections. In 2009, for the first time, the U.S. Chamber of Commerce surpassed both the Republican and Democratic National Committees on political spending; the following year, more than 90 percent of the Chamber's cash went to GOP candidates, many of whom deny the existence of global warming. Not long ago, the Chamber even filed a brief with the EPA urging the agency not to regulate carbon – should the world's scientists turn out to be right and the planet heats up, the Chamber advised, "populations can acclimatize to warmer climates via a range of behavioral, physiological and technological adaptations." As radical goes, demanding that we change our physiology seems right up there.

Environmentalists, understandably, have been loath to make the fossil-fuel industry their enemy, respecting its political power and hoping instead to convince these giants that they should turn away from coal, oil and gas and transform themselves more broadly into "energy companies." Sometimes that strategy appeared to be working – emphasis on appeared. Around the turn of the century, for instance, BP made a brief attempt to restyle itself as "Beyond Petroleum," adapting a logo that looked like the sun and sticking solar panels on some of its gas stations. But its investments in alternative energy were never more than a tiny fraction of its budget for hydrocarbon exploration, and after a few years, many of those were wound down as new CEOs insisted on returning to the company's "core business." In December, BP finally closed its solar division. Shell shut down its solar and wind efforts in 2009. The five biggest oil companies have made more than $1 trillion in profits since the millennium – there's simply too much money to be made on oil and gas and coal to go chasing after zephyrs and sunbeams.

Much of that profit stems from a single historical accident: Alone among businesses, the fossil-fuel industry is allowed to dump its main waste, carbon dioxide, for free. Nobody else gets that break – if you own a restaurant, you have to pay someone to cart away your trash, since piling it in the street would breed rats. But the fossil-fuel industry is different, and for sound historical reasons: Until a quarter-century ago, almost no one knew that CO2 was dangerous. But now that we understand that carbon is heating the planet and acidifying the oceans, its price becomes the central issue.

If you put a price on carbon, through a direct tax or other methods, it would enlist markets in the fight against global warming. Once Exxon has to pay for the damage its carbon is doing to the atmosphere, the price of its products would rise. Consumers would get a strong signal to use less fossil fuel – every time they stopped at the pump, they'd be reminded that you don't need a semimilitary vehicle to go to the grocery store. The economic playing field would now be a level one for nonpolluting energy sources. And you could do it all without bankrupting citizens – a so-called "fee-and-dividend" scheme would put a hefty tax on coal and gas and oil, then simply divide up the proceeds, sending everyone in the country a check each month for their share of the added costs of carbon. By switching to cleaner energy sources, most people would actually come out ahead.

There's only one problem: Putting a price on carbon would reduce the profitability of the fossil-fuel industry. After all, the answer to the question "How high should the price of carbon be?" is "High enough to keep those carbon reserves that would take us past two degrees safely in the ground." The higher the price on carbon, the more of those reserves would be worthless. The fight, in the end, is about whether the industry will succeed in its fight to keep its special pollution break alive past the point of climate catastrophe, or whether, in the economists' parlance, we'll make them internalize those externalities.

It's not clear, of course, that the power of the fossil-fuel industry can be broken. The U.K. analysts who wrote the Carbon Tracker report and drew attention to these numbers had a relatively modest goal – they simply wanted to remind investors that climate change poses a very real risk to the stock prices of energy companies. Say something so big finally happens (a giant hurricane swamps Manhattan, a megadrought wipes out Midwest agriculture) that even the political power of the industry is inadequate to restrain legislators, who manage to regulate carbon. Suddenly those Chevron reserves would be a lot less valuable, and the stock would tank. Given that risk, the Carbon Tracker report warned investors to lessen their exposure, hedge it with some big plays in alternative energy.

"The regular process of economic evolution is that businesses are left with stranded assets all the time," says Nick Robins, who runs HSBC's Climate Change Centre. "Think of film cameras, or typewriters. The question is not whether this will happen. It will. Pension systems have been hit by the dot-com and credit crunch. They'll be hit by this." Still, it hasn't been easy to convince investors, who have shared in the oil industry's record profits. "The reason you get bubbles," sighs Leaton, "is that everyone thinks they're the best analyst – that they'll go to the edge of the cliff and then jump back when everyone else goes over."

So pure self-interest probably won't spark a transformative challenge to fossil fuel. But moral outrage just might – and that's the real meaning of this new math. It could, plausibly, give rise to a real movement.

Once, in recent corporate history, anger forced an industry to make basic changes. That was the campaign in the 1980s demanding divestment from companies doing business in South Africa. It rose first on college campuses and then spread to municipal and state governments; 155 campuses eventually divested, and by the end of the decade, more than 80 cities, 25 states and 19 counties had taken some form of binding economic action against companies connected to the apartheid regime. "The end of apartheid stands as one of the crowning accomplishments of the past century," as Archbishop Desmond Tutu put it, "but we would not have succeeded without the help of international pressure," especially from "the divestment movement of the 1980s."

The fossil-fuel industry is obviously a tougher opponent, and even if you could force the hand of particular companies, you'd still have to figure out a strategy for dealing with all the sovereign nations that, in effect, act as fossil-fuel companies. But the link for college students is even more obvious in this case. If their college's endowment portfolio has fossil-fuel stock, then their educations are being subsidized by investments that guarantee they won't have much of a planet on which to make use of their degree. (The same logic applies to the world's largest investors, pension funds, which are also theoretically interested in the future – that's when their members will "enjoy their retirement.") "Given the severity of the climate crisis, a comparable demand that our institutions dump stock from companies that are destroying the planet would not only be appropriate but effective," says Bob Massie, a former anti-apartheid activist who helped found the Investor Network on Climate Risk. "The message is simple: We have had enough. We must sever the ties with those who profit from climate change – now."

Movements rarely have predictable outcomes. But any campaign that weakens the fossil-fuel industry's political standing clearly increases the chances of retiring its special breaks. Consider President Obama's signal achievement in the climate fight, the large increase he won in mileage requirements for cars. Scientists, environmentalists and engineers had advocated such policies for decades, but until Detroit came under severe financial pressure, it was politically powerful enough to fend them off. If people come to understand the cold, mathematical truth – that the fossil-fuel industry is systematically undermining the planet's physical systems – it might weaken it enough to matter politically. Exxon and their ilk might drop their opposition to a fee-and-dividend solution; they might even decide to become true energy companies, this time for real.

Even if such a campaign is possible, however, we may have waited too long to start it. To make a real difference – to keep us under a temperature increase of two degrees – you'd need to change carbon pricing in Washington, and then use that victory to leverage similar shifts around the world. At this point, what happens in the U.S. is most important for how it will influence China and India, where emissions are growing fastest. (In early June, researchers concluded that China has probably under-reported its emissions by up to 20 percent.) The three numbers I've described are daunting – they may define an essentially impossible future. But at least they provide intellectual clarity about the greatest challenge humans have ever faced. We know how much we can burn, and we know who's planning to burn more. Climate change operates on a geological scale and time frame, but it's not an impersonal force of nature; the more carefully you do the math, the more thoroughly you realize that this is, at bottom, a moral issue; we have met the enemy and they is Shell.

Meanwhile the tide of numbers continues. The week after the Rio conference limped to its conclusion, Arctic sea ice hit the lowest level ever recorded for that date. Last month, on a single weekend, Tropical Storm Debby dumped more than 20 inches of rain on Florida – the earliest the season's fourth-named cyclone has ever arrived. At the same time, the largest fire in New Mexico history burned on, and the most destructive fire in Colorado's annals claimed 346 homes in Colorado Springs – breaking a record set the week before in Fort Collins. This month, scientists issued a new study concluding that global warming has dramatically increased the likelihood of severe heat and drought – days after a heat wave across the Plains and Midwest broke records that had stood since the Dust Bowl, threatening this year's harvest. You want a big number? In the course of this month, a quadrillion kernels of corn need to pollinate across the grain belt, something they can't do if temperatures remain off the charts. Just like us, our crops are adapted to the Holocene, the 11,000-year period of climatic stability we're now leaving... in the dust.

This story is from the August 2nd, 2012 issue of Rolling Stone.

Read more: RollingStone Politics

segunda-feira, 13 de fevereiro de 2012

STUNNING: Comparing U.S. & World Covers for TIME Magazine

Writing by David Harris Gershon
Daily Kos group
Each week, TIME Magazine designs covers for four markets: the U.S., Europe, Asia and the South Pacific. Often, America's cover is quite, well – different. This week offers a stark example.
Witness:
time
Yes, what you see is TIME devoting its cover in international markets to a critical moment in Egypt's revolution – perhaps the most important global story this week – while offering Americans the chance to contemplate their collective navels (with a rather banal topic and supposition, to boot).
This is not an isolated incident, for perusing TIME's covers reveals countless examples of the publication tempting the world with critical events, ideas or figures, while dangling before Americans the chance to indulge in trite self-absorption.
Witness these stunning dichotomies:
time2 time1
time4
time3
Viewing these covers, a question must be asked: do these moments of marketing (through a choice in covers) reveal more about Americans, or about the state of American journalism?
I fear the answer.
----------------------------------
Follow me on Twitter @David_EHG
----------------------------------

Author's Note: It should be noted that, in many instances, the cover story projected to international audiences is included, if buried, in the American editions. However, the point is the projection itself – the marketing of a "news" magazine to its various audiences, and what that projection says (or doesn't say).

sexta-feira, 3 de fevereiro de 2012

Is the Russian Forest Code a warning for Brazil?


SHARE:





print
Jeremy Hance
mongabay.com
December 19, 2011



Recent deforestation in the Brazilian Amazon. Photo by: Rhett A. Butler.
Recent deforestation in the Brazilian Amazon. Photo by: Rhett A. Butler.



Brazil, which last week moved to reform its Forest Code, may find lessons in Russia's revision of its forest law in 2007, say a pair of Russian scientists.

The Brazilian Senate last week passed a bill that would relax some of forest provisions imposed on landowners. Environmentalists blasted the move, arguing that the new Forest Code — provided it is not vetoed by Brazilian President Dilma Rousseff next year — could undermine the country's progress in reducing deforestation.

Based on Russia's recent experience, scientists Victor Gorshkov and Anastassia Makarieva say there may be justification for the concern.

Although one deals with tropical rainforests and the other boreal forests, both nations manage some of the largest forest areas in the world, and one has implemented large-scale changes— Russia— while the other— Brazil— is on the verge of doing so.

At the start of 2007, Russia's new Forest Code went into effect. The new code was meant to move control over forests from federal government to regional governments. Development could now occur without any Environmental Impact Assessment (EIA) with forests viewed largely as commodities rather than ecosystems.

"[The] forest code was meant to take power over forest from the old 'owners' (those officials who inherited forest control from the Soviet Union) and give it to the new Russian businessmen who arranged themselves into a force in the end of the 1990s. Members of our present political elite are said to have had shares in some of the largest forest companies in early 90s. Neither the old or the new managers actually cared much about forest conservation, but in comparative terms the old ones were better," Russian scientists Victor Gorshkov and Anastassia Makarieva, who openly opposed the changes, told mongabay.com.

The transition between the old Forest Code and the new one has proven rocky in Russia as many issues were left vague in the new law, allowing what Gorshkov and Makarieva describe as a free-for-all forest policy.



keystone protesters
"In practice [the Russian Forest Code] came to mean that everyone could locally log anything without bearing any responsibility about the consequences or sustainability. [...] The chaos that followed when this raw law was adopted caused illegal logging to spike. [...] The North-European Russia was affected most severely, because it has a richer system of roads than say Siberia," Gorshkov and Makarieva say.

During plans to enact new Forest Code legislation Gorshkov and Makarieva, both with the B.P. Konstantinov Petersburg Nuclear Physics Institute, wrote two open letters to their government "warning against the new forest code." Gorshkov and Makarieva are known as the authors of a revolutionary, and contentious, theory that forests act as a pump for precipitation, bringing rainfall from coastlines to continental interiors. According to them, forests, and not temperatures, drive wind due to condensation. While the theory has received much push-back from some meteorologists, it has also piqued interest among conservationists and other scientists.

In their letters to the government the researchers warned that "enhanced forest exploitation will disrupt the hydrological cycle in the continental Russia and predicted drastic droughts among other climatic extremes."

Three years after the implementation of Russia's New Forest Code, record-breaking heatwave, droughts, and fires struck Russia, leaving Moscow under a shroud of smoke, consuming a fifth of Russia's globally-important wheat harvest, and likely killing thousands.

To some it seemed that Gorshkov and Makarieva's warnings had come true, making the two physicists appear like modern-day Cassandras, the always-right Trojan prophetess doomed to be ignore.

"When in 2010 the disastrous heat wave struck the European part of the country, our letters were widely cited in the Russian Internet. We are convinced that the climate anomalies in Europe are due to massive Russian deforestation, which disrupts the normal west-to-east moisture flow from the Atlantic over Eurasia," Gorshkov and Makarieva say.

Still, the causes behind the record heatwave are under debate: two recent studies conflicted over the role climate change may have played in the heatwave and drought.

But one issue that is not contentious is how Russia's new Forest Code undercut fire management during the 2010 disasters. Responsibility for managing forest fires had passed from the federal government to regional governments, yet few had picked up the slack.

"There were no organized bodies to prevent [the fires'] spread. In the result, we lost lives, property and a great forest area was damaged," Gorshkov and Makarieva say.

In Russia's case, loosening regulations on forests led to large-scale destruction, a situation that was made worse by a vague law, which made little reference to public and community rights over forests. In addition, people took advantage of the uncertainty to cut down forests for short-term profit. While there specific regulations are different, Brazil this March saw a sudden spike in Amazon deforestation, which many observers have linked to the mere possibility of the new Forest Code becoming law, though deforestation was down in total for the year.

Given Russia's experience, one has to ask, if the new Forest Code should become law, how will Brazil rein-in those who would take advantage over temporary government uncertainty?

A more fundamental question may be: is this the time to loosen regulations in the Amazon or strengthen them? Gorshkov and Makarieva argue through their theory that the on-going loss of the Amazon rainforest will lead to widespread drought, a problem that has already plagued the Amazon in recent years.

"Regarding the consequences of enhanced deforestation for Brazil, the biotic pump concept predicts drastic fluctuations and a growing instability of the hydrological cycle with a trend towards desertification. Recent studies (e.g. Espinoza et al. 2009) confirm the decline of precipitation in the Amazon basin which is particularly well manifested since early 1980. In line with this trend, the Amazon basin saw several outstanding droughts in a short term from 1998 to 2010," they say.

Many environmentalists warn that it could become worse, warning that Brazil's proposed code strips longstanding (even if widely flouted) regulations: WWF estimates that the revised Forest Code will reduce forest cover in Brazil by 76.5 million hectares (295,000 square miles), an area larger than Texas. Such a loss could be devastating for freshwater sources, biodiversity, and indigenous people. But according to Gorshkov and Makarieva it will also exacerbate drought conditions, perhaps undermining the entire Amazon ecosystem and leaving Brazil agriculture high and dry.


Image of Russia and nearby areas from August 4th, 2010 by NASA's Moderate Resolution Imaging Spectroradiometer during the Russian heatwave in 2010, which sparked drought and fires. Especially intense fires are outlined in red. Smoke from peat and forest fires lead to dangerous levels of pollution throughout Moscow and surrounding areas. Photo by: NASA. Click to enlarge.


Read more: http://news.mongabay.com/2011/1218-hance_russia_brazil.html#ixzz1lK3QGhsJ

New meteorological theory argues that the world's forests are rainmakers


Jeremy Hance
Read more at mongabay.com
February 01, 2012


The Amazon rainforest meets cleared area for cattle pasture. A radical meteorology theory argues that loss of forest, both in temperate and tropical regions, will lead to less precipitation over land. Photo by: Rhett A. Butler.
The Amazon rainforest meets cleared area for cattle pasture. A radical meteorology theory argues that loss of forest, both in temperate and tropical regions, will lead to less precipitation over land. Photo by: Rhett A. Butler.


New, radical theories in science often take time to be accepted, especially those that directly challenge longstanding ideas, contemporary policy or cultural norms. The fact that the Earth revolves around the sun, and not vice-versa, took centuries to gain widespread scientific and public acceptance. While Darwin's theory of evolution was quickly grasped by biologists, portions of the public today, especially in places like the U.S., still disbelieve. Currently, the near total consensus by climatologists that human activities are warming the Earth continues to be challenged by outsiders. Whether or not the biotic pump theory will one day fall into this grouping remains to be seen.



 First published in 2007 by two Russian physicists, Victor Gorshkov and Anastassia Makarieva, the still little-known biotic pump theory postulates that forests are the driving force behind precipitation over land masses. Since the biotic pump turns modern meteorology on its head, it has faced stiff resistance from some meteorologists and journals. Meanwhile, it has received little attention in the public or policy-sphere. Yet if Gorshkov and Makarieva's theory proves correct, it would have massive implications for global policy towards the world's forests, both tropical and temperate.

"The biotic pump is a mechanism in which natural forests create and control ocean-to-land winds, bringing moisture to all terrestrial life," Gorshkov and Makarieva told mongabay.com in a recent interview. According to them it is condensation from forests, and not temperature differences, that drives the winds which bring precipitation over land. 







Forest in Big Sur, California. Photo by: Rhett A. Butler.
Forest in Big Sur, California. Photo by: Rhett A. Butler.
"The biotic pump concept gives a consistent physical explanation of how this should be interpreted. Rather than focusing on temperature gradients, which are often a consequence rather than cause of the circulation, one should investigate the conditions when condensation is likely to occur to predict changes in atmospheric circulation," they say, adding that recent work has used the biotic pump to quantitatively explain tornadoes and hurricanes.

But such a radical theory does not gain acceptance or even acknowledgement easily.

"The biotic pump theory calls on the meteorological community to admit a possibility that an important atmospheric circulation driver has been overlooked. As long as one continues to ignore the role of condensation in driving winds, one will continue to ignore the real role of forests in the water cycle and climate," Gorshkov and Makarieva say, adding the current underpinnings of meteorology fail to adequately explain drought and flood events around the world. In addition, the biotic pump theory helps shed light on the rise and fall of past civilizations, such as the Nazca and the Maya.

Gorshkov and Makarieva argue that despite skepticism, the biotic pump theory deserves the full consideration of scientists—quickly.

"Given the deforestation threat, there is no time to lose," they say, further noting that only natural forests, and not monoculture tree plantations, are able to act as biotic pump due because of the ecological changes that occur when forest is converted into plantations.


"The biotic pump theory shows that natural forests are indispensable if we want to have rainfall, and, consequently, agriculture on the land where we live. This scientific message has important economic implications," Gorshkov and Makarieva say. "First of all, people and governments worldwide should realize that economic growth cannot occur at the expense of cutting forests either in one's own country or elsewhere. It is undermining the very pillars of our civilization’s existence. When water and food security are at stake, it is not possible for forest industries to focus on growth, just to increase the global production of wrapping and toilet paper. This should be the main topic of environmental campaigns."

It has long been known that the world's forests provide refuge to the vast majority of terrestrial species, store massive amounts of carbon, safeguard many of the world's most important watersheds, and are home to numerous indigenous groups, yet forests continue to fall at staggering rates. If biotic pump theory proves true, it adds a new and vital ecosystem service to the world's forests: rainmakers.

In a January 2012 interview Victor Gorshkov and Anastassia Makarieva describe the mechanics of the biotic pump theory, the difficulties of gaining notice in the meteorology community, the relation of the biotic pump to climate change, and how deforestation in places like the Amazon and Indonesia threaten precipitation.


A NEW METEOROLOGY: AN INTERVIEW WITH VICTOR GORSHKOV AND ANASTASSIA MAKARIEVA 
 



Victor Gorshkov and Anastassia Makarieva.
Victor Gorshkov and Anastassia Makarieva.



Mongabay: Will you tell us how the biotic pump works?

Victor Gorshkov and Anastassia Makarieva: The biotic pump is a mechanism in which natural forests create and control ocean-to-land winds, bringing moisture to all terrestrial life. Winds tend to blow from areas of high air pressure to low. But how is a low pressure system created over land? Air pressure depends on the number of gas molecules. When water vapor condenses, it disappears from the gas phase; the number of gas molecules diminishes, and the air pressure falls. Therefore, if we manage to maintain the process of condensation over land, the latter becomes a persistent low pressure zone.

Water vapor in Earth’s atmosphere possesses a remarkable physical property: it is unstable to condensation. This means if an air volume containing a lot of vapor is occasionally displaced upward, the air will cool so significantly that the vapor condenses. Due to this instability, if there is a sufficient amount of water vapor in the warm lower atmosphere condensation will occur.

The green foliage and branches of trees have a much greater cumulative area than that of a tree projection on the ground. Hence, forest evaporation enriches the atmosphere with water vapor more efficiently than evaporation from an open water surface of the same area. Consequently, condensation occurs more readily over forests than over the ocean. Forests, rather than the ocean, become the low pressure zone where the moist winds converge to. Completing the cycle, moisture precipitates over the land and returns to the ocean in the form of river runoff.

Mongabay: Why do you associate the biotic pump with natural forests rather than with trees in general? Could a monoculture tree plantation act as biotic pump?


A palm oil plantation on the island of Sumatra in Indonesia. Such plantations may look like 'forest,' but Gorshkov and Makarieva argue that the biotic pump doesn't work over monoculture plantations as well as over natural forest. Photo by: Rhett A. Butler.
A palm oil plantation on the island of Sumatra in Indonesia. Such plantations may look like 'forest,' but Gorshkov and Makarieva argue that the biotic pump doesn't work over monoculture plantations as well as over natural forest. Photo by: Rhett A. Butler
Victor Gorshkov and Anastassia Makarieva: As with all life processes, the biotic pump is a highly-organized complex process. In order to sustain condensation that keeps the air pressure low on land—so that moist winds blow to land from the ocean—there must be intense evaporation from the forest canopy. But evaporation diminishes the amount of moisture in soil. Moisture is additionally lost from soil by gravitational runoff. If all the soil moisture is gone, evaporation stops, and so does the atmospheric moisture transport. This means that a non-trivial balance must be maintained: forest evaporation must be exactly such that it never fully depletes the soil moisture but at the same time is intense enough to ensure that the amount of moisture brought from the ocean by winds compensates moisture losses in the soil.

Native species that form natural forest communities have evolved a complex set of genetically encoded biophysical and morphological traits that make the biotic pump possible. These traits took hundred million of years to evolve. For example, the root system of forest trees facilitates both storage and extraction of moisture from soil; biogenic aerosols produced by trees control the intensity of water vapor condensation over the forest; the large height of trees determines the vertical temperature gradient under the canopy, keeping soil evaporation under biotic control; tall trees are also essential for surface friction that does not allow extremely high wind velocities to develop. Thus, natural forests not only create an ocean-to-land moist air flow, but also stabilize this flow at an optimum level and prevent its extreme fluctuations like hurricanes, tornadoes, severe droughts or floods. Species other than plants (bacteria, fungi, animals) are essential for the stability of the forest ecosystem itself.

Monocultures or plantations consisting of a random set of plant species do not possess the required set of correlated traits. To give two extremely simplified examples: if one plants cacti, they will evaporate too little and will be unable to keep the atmosphere persistently moist. If one plants eucalyptus, they will evaporate readily but will be unable to prevent soil from drying. In either case, the biotic pump will not work. Generally, information fluxes processed by the natural biota exceed by twenty orders of magnitude the information processing capacity of modern civilization. It is not possible to create a technological analogue of the biotic pump.

THE SCIENCE BEHIND THE BIOTIC PUMP THEORY

This figure shows the "tug-of-war" between the forest and the ocean for the right to become a predominant condensation zone. In Fig. a: on average the Amazon and Congo forests win this war: annual precipitation over forests is two to three times larger than the precipitation over the Atlantic Ocean at the same latitude. Note the logarithmic scale on the vertical axis: "1" means that the land/ocean precipitation ratio is equal to e = 2.718, "2" means it is equal to e2 ≈ 7.4; 0 means that this ratio is unity (equal precipitation on land and the ocean); "-1" means this ratio is 1/e ≈ 0.4; and so on. In Fig. b: the Eurasian biotic pump. In winter the forest sleeps, so the ocean wins, and all moisture remains over the ocean and precipitates there. In summer, when trees are active, moisture is taken from the ocean and distributed regularly over seven thousand kilometers. The forest wins! (compare the red and black lines) As a result, precipitation over the ocean in summer is lower than it is in winter, despite the temperature in summer is higher. Finally, in panel (c): an unforested Australia. One can often hear that Australia is so dry because it is situated in the descending branch of the Hadley cell. But this figure shows that such an interpretation does not hold. Both in wet and dry seasons precipitation over Australia is four to six times lower than over the ocean. There is no biotic pump there. Being unforested, oceanic moisture cannot penetrate to the Australian continent irrespective of how much moisture there is over the ocean; during the wet season it precipitates in the coastal zones causing floods. Gradually restoring natural forests in Australia from coast to interior will recover the hydrological cycle on the continent. Click to enlarge.



Mongabay: Have there been any significant changes to your biotic pump theory over the last couple years?

Victor Gorshkov and Anastassia Makarieva: The physical basis of the biotic pump consists in the statement that winds are driven mostly by condensation-induced pressure gradients rather than by temperature differences (such as warm air rises) as conventionally considered. As we judged from the first reactions to our work, this is the most difficult statement for the meteorological community to accept. Recently we concentrated our efforts on demonstrating the quantitative validity of the proposed mechanism of condensation-induced atmospheric dynamics. We have shown that it quantitatively explains hurricanes and tornadoes, having obtained from theory radial profiles of pressure and velocity that agree well with observations. On the other hand, we criticized some of the existing explanations of the same phenomena arguing that these contain physical errors. A full list of our publications concerning the biotic pump can be found here.

Mongabay: Have you seen wider acceptance in the scientific community for your theory?


Redwood forest of Russian Gulch State Park . Photo by: Rhett A. Butler.
Redwood forest of Russian Gulch State Park in California. Photo by: Rhett A. Butler
Victor Gorshkov and Anastassia Makarieva: Generally, judging from the increasing number of citations of our first biotic pump papers, our work is gradually gaining more attention. The biotic pump theory calls on the meteorological community to admit a possibility that an important atmospheric circulation driver has been overlooked. As long as one continues to ignore the role of condensation in driving winds, one will continue to ignore the real role of forests in the water cycle and climate. Given the deforestation threat, there is no time to lose. So we are undertaking all possible efforts to stimulate a constructive discussion of condensation dynamics by members of the meteorological community.

Still, the progress appears to be slow. In 2010 we submitted an overview of the theory to the journal ACPD, Atmospheric Chemistry and Physics Discussions that allows for an open discussion of submitted papers: Makarieva A.M., Gorshkov V.G., Sheil D., Nobre A.D., Li B.-L. (2010) Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmospheric Chemistry and Physics Discussions, 10, 24015- 24052.

For six months the editors could not find reviewers willing to publicly evaluate our work. After we informed the wider scientific community of our situation, a leading NOAA hydrologist circulated our work among many of his colleagues-meteorologists. Only one of them considered the possibility of becoming a referee, and he strongly objected to our work. As we have always welcomed any criticism to be put forward openly regarding our work, we suggested that the editor invite the referee even though we knew in advance that he had a negative view of our work. After the negative review was posted, we replied to all the arguments. Since then the paper was suspended, it has now been in open review for over fifteen months and it's been twenty months since our submission. As any scientist will tell you, such extraordinary impediments and delays would discourage any researcher; they are disrupting the normal scientific process. But we remain hopeful that our efforts are not in vain.

Mongabay: Can you give an example of why the current understanding of condensation and precipitation is wrong?

Victor Gorshkov and Anastassia Makarieva: Our work was discussed rather widely on the web, sometimes with direct or indirect participation of leading meteorologists. These discussions revealed that the physics of condensation has not been given sufficient attention by the meteorological community, the result being that even some very basic issues remained unresolved and unclear to many. For example, a question that caused a lot of confusion was: if condensation occurs in the atmosphere and some vapor turns to liquid, will air pressure at the surface be affected near instantaneously or only after the raindrops have fallen to the ground? The latter is a common view caused by a fundamental misunderstanding of the concept of hydrostatic equilibrium.


Rainstorm over the Amazon. Photo by: Rhett A. Butler.
Rainstorm over the Amazon. Photo by: Rhett A. Butler.
In hydrostatic equilibrium, air pressure at any height is equal to the weight of air in the atmospheric column above that height. Many meteorologists think that hydrostatic air pressure at the surface is equal to the weight of both air and all the liquid and solid bodies including the raindrops that are in the upper atmosphere. Had this been true, condensation in hydrostatic equilibrium could have never changed the surface pressure prior to precipitation fallout, because condensation of gas (vapor) into liquid does not change the total amount of matter. However, ideal gas pressure depends on the number of particles not their mass. The number of liquid drops is many orders of magnitude smaller than the number of gas molecules that have condensed into those drops. Therefore, condensation immediately lowers air pressure and disturbs the hydrostatic equilibrium. Recently a paper devoted to this question was published in a leading meteorological journal where, with use of numerical modeling, this conclusion was articulated. That a paper with such a basic conclusion has appeared only now—in the second decade of the Twenty First Century—demonstrates that the efforts to study the dynamic effects of condensation by the meteorological community are in their incipient stage.

In the meantime, practically all climate and weather phenomena where condensation and precipitation are involved are challenging modern meteorology. For example, the existing global circulation models do not adequately describe the water cycle in the Amazon, with the modeled moisture convergence being half the actual amounts estimated from the observed runoff values. It is widely recognized that despite the ever-improving observation facilities and the available computer power, there is no progress in predicting the intensity of tropical cyclones.

When analyzing how precipitation changes with time (e.g., in the Amazon or Congo regions) it is common to explore correlations with oceanic temperature anomalies. The conventional logic is that as the ocean becomes warmer, the warm air rises over the ocean and moisture precipitates there rather than over land, hence a drought occurs. However, such logic does not take into account that as the land becomes drier, it also warms significantly. It is unexplainable within the conventional paradigm why the warm air does not rise over the hot and dry land. All heat waves and droughts, like the one in European Russia in 2010 or the one in Texas in 2011, are associated with persistent descending air motion.

Neither are flooding events explained by the conventional paradigm. For example, of the two extreme floods that hit Thailand in 2011, the first one occurred early in the year during the dry season. Then the land is cooler, the ocean is warmer and winds blow from land to the ocean, so that the continent remains dry. In early 2011 the region was struck by an unusual cold wave, which caused this temperature gradient to become even more pronounced. According to the conventional paradigm, this should only strengthen dry conditions. In reality, however, a major flooding happened.

Evidence of this type, which is controversial with respect to the conventional paradigm, is mounting and the biotic pump concept gives a consistent physical explanation of how this should be interpreted. Rather than focusing on temperature gradients, which are often a consequence rather than cause of the circulation, one should investigate the conditions when condensation is likely to occur to predict changes in atmospheric circulation.

REGIONAL EXAMPLES OF THE BIOTIC PUMP

The Maya city of Tulum. Research is adding up that deforestation may have been a large factor in the decline of the Mayan civilization. Photo by: Rhett A. Butler.
The Maya city of Tulum. Research is adding up that deforestation may have been a large factor in the decline of the Mayan civilization. Photo by: Rhett A. Butler.



Mongabay: Recent evidence has linked the decline and fall of the Maya civilization to deforestation leading to less precipitation. How could the biotic pump theory connect to this?

Victor Gorshkov and Anastassia Makarieva: This data, as well as the data on the Nazca civilization in Peru, are in agreement with the biotic pump concept. It is noteworthy that the Yucatan peninsula is a relatively small region with maximum distance from coast never exceeding a thousand kilometers. This means that even so close to the ocean, massive deforestation can cause a significant precipitation decline.

The proposed explanation (see article: Evidence mounts that Maya did themselves in through deforestation) based on a slight change in albedo after deforestation and a corresponding decrease in solar energy available for convection does not make sense to us (although as we understand this work has not yet been published so we could not read it in detail). The power of atmospheric circulation does not exceed around 1 percent of solar power. It is not limited by solar radiation, but by the flux of potential energy available for conversion to the kinetic energy. The conventional paradigm associates this potential energy with temperature-related buoyancy. That is, to put things simply, if you do not have a temperature difference, you do not have a circulation, all other things (including solar energy) being the same. We propose a different source of potential energy associated with water vapor removal from the gas phase: after the Mayan forests were destroyed, evaporation and condensation ceased to occur over the Yucatan peninsula (irrespective of how its albedo changed). The result was that the low pressure zone was no longer there and moist air ceased to come to the Maya from the ocean. Generally, the biotic pump theory calls us to re-analyze the historical evidence associated with land cover change and the changes in the precipitation regime.

Mongabay: How do you see deforestation in the Amazon as impacting regional precipitation?

Victor Gorshkov and Anastassia Makarieva: According to recent analyses, during 1973-2003 precipitation in the Amazon River basin was declining at a rate of 0.3 percent annually, which means a trend of about 10 percent for the entire period. This does not include the most recent devastating droughts of 2005 and 2010. In the meantime, deforestation in the basin has amounted to about 30 percent during the same period. Deforestation mostly disturbed southern and south-eastern parts of the basin, where the precipitation/evaporation is less than in the basin core. Assuming that the total biotic pump intensity is a function of the integral of local precipitation over the total forest-covered area, one can conclude that the decrease in precipitation intensity is of the same order of magnitude as the degree of biotic pump deterioration. As deforestation marches to the interior of the basin and affects the ever more productive forests with the most precipitation, the disruption of the water cycle in the basin will increase disproportionately.

Mongabay: How do you think widespread deforestation will effect the hydrological cycle of places like the Indonesian islands? Given their smaller size, do they need the biotic pump?


Devastated rainforest landscape in Borneo. Indonesia has one of the highest rates of deforestation worldwide. Photo by: Rhett A. Butler.
Devastated rainforest landscape in Borneo. Indonesia has one of the highest rates of deforestation worldwide. Photo by: Rhett A. Butler.
Victor Gorshkov and Anastassia Makarieva: The total area occupied by the Indonesian archipelago, including space between the islands, is quite significant. Open water space between the forest-covered islands can only slightly weaken the biotic pump of the Indonesian forests that likely determine the precipitation regime in the adjacent oceanic regions. Indeed, there is a relatively stable low pressure zone over Indonesia that causes the so-called Walker circulation: surface air moves from the high pressure region of the eastern Pacific ocean towards the low pressure zone over Indonesia. When this low pressure zone diminishes or erodes, the Walker circulation weakens and an El Niño results. When the Walker circulation is strong, we have a La Niña. These phenomena are well-known for their long-range impacts on the climate of the Americas.

The biotic pump theory helps us understand why there is a low pressure system in Indonesia (because of intense condensation associated with forest functioning). Thus deforestation in the region should lead to a weakening of the Walker circulation. While this pattern needs to be further explored, it is worth mentioning that while the period from 1950 to 1975 was largely dominated by La Niña's (strong Walker circulation), starting from the late 70s the frequency of La Niñas dropped. This is in agreement with the idea that Indonesian deforestation over the last 30 years could have modified the large-scale airflow.

Mongabay: Does the biotic pump theory apply to boreal forests, such as those in Russia, as well?

Victor Gorshkov and Anastassia Makarieva: Biotic pump of the boreal forest zone is fully responsible for atmospheric moisture transport from the (Atlantic) ocean over several thousand kilometers. Recent deforestation in European Russia is apparently disrupting this mechanism causing abnormal warming and droughts.

Mongabay: Does biotic pump theory modify our current understanding of global climate change?

Victor Gorshkov and Anastassia Makarieva: The widespread view is that global climate change is largely due to anthropogenic pollution of the global environment. The main anthropogenic pollutant is carbon dioxide, which is emitted by burning fossil fuels. CO2 is the second most important greenhouse substance in the atmosphere of Earth, therefore its accumulation in the atmosphere is believed to be the main cause of the observed warming and other climatic changes. The main proposed strategy to combat climate change is by reducing carbon emissions.


Temperate rainforest of Alaska. According to the biotic pump theory, both temperate and tropical forests play a similar role in precipitation patterns. Photo by: Rhett A. Butler.
Temperate rainforest of Alaska. According to the biotic pump theory, both temperate and tropical forests play a similar role in precipitation patterns. Photo by: Rhett A. Butler.
However, the greenhouse effect on Earth is mostly determined by water vapor and clouds, i.e., by atmospheric moisture, which is the main greenhouse substance. The absorption interval of CO2 molecules covers less than 20 percent of the spectrum of thermal radiation of the Earth’s surface, while atmospheric moisture absorbs thermal radiation rather uniformly over the entire spectrum. Therefore, the impact of increasing CO2 concentrations on the greenhouse effect can be completely compensated by a relatively minor change in the hydrological cycle over land. Such climate stabilization can be performed by natural forests that control the hydrological cycle on land and the adjacent ocean, provided they are allowed to occupy a significant area. Conversely, destruction of forests leads to disruption of the hydrological cycle, which expectedly causes significant fluctuations of the magnitude of the global greenhouse effect, up to complete loss of climate stability and transition of Earth’s climate to a state incompatible with life.

Most modern climate researchers have grown up on computer models of climate and are used to believing in the model output. As illustrated by the discussion of our work, it is rarely appreciated that by artificially setting the needed numerical parameters it is possible to simulate a very broad range of climate scenarios, including those that will agree with observations of the past. The existence of simulations that mimic the past and present reality does not mean that the physics included in the models is correct or that the model can generate a trustworthy prediction.

What is more, modern climate modeling has been traditionally implemented by people with a technological background and little knowledge of ecosystem functioning. Such knowledge is generally poor, too. Thus, the ecological systems are "fed" into the models as a set of geophysical parameters, e.g., albedo, evaporation rate, surface roughness, amount of stored carbon etc. While the numeric values of these parameters are borrowed from reality, they do not represent the ecosystem functioning in very much the same manner as a colored high-resolution digital photo of a dead corpse does not represent a live human being. Without studying the principles of highly-organized functioning of ecological communities, including their genetically encoded ability to respond to environmental perturbations in a non-random compensatory way, the perspectives drawn from global circulation models with respect to the climatic effects of land cover change (e.g., statements like cutting all boreal forests will ease global warming) will continue to lack any resemblance to reality.

Quantitative analysis of ecological and biological variables is a very complicated task due to the complexity of living objects. Consider a flying canon and a flying bird that are both under gravity. A quantitative description of the former is straightforward, while to predict where and how the bird will fly from initial conditions is not feasible. This complexity of living systems and the number of surprises it implies for global environmental research has only recently begun to be gradually appreciated across a number of disciplines, from organismal energetics to soil biochemistry and climatology.

The biotic pump concept (and more generally the theory of the biotic regulation of the environment of which the former is a part) for the first time quantifies the stabilizing environmental function of natural ecosystems with respect to the hydrological cycle and pinpoints the physical mechanism that is responsible for this function. We must elevate the status of ecosystem conservation from a side issue in global environmental talks and treaties (that are exclusively focused on carbon) to an urgent high priority issue. We must also implement targeted research programs to study the stabilizing impact of natural ecosystems, to stimulate public discussion, and to raise people’s awareness of the real value of forests.

THE BIOTIC PUMP AND POLICY



Mongabay: What policy changes does the biotic theory suggest for governments worldwide?

Victor Gorshkov and Anastassia Makarieva: 1. The biotic pump theory shows that natural forests are indispensable if we want to have rainfall, and, consequently, agriculture on the land where we live. This scientific message has important economic implications. First of all, people and governments worldwide should realize that economic growth cannot occur at the expense of cutting forests either in one's own country or elsewhere. It is undermining the very pillars of our civilization’s existence. When water and food security are at stake, it is not possible for forest industries to focus on growth, just to increase the global production of wrapping and toilet paper. This should be the main topic of environmental campaigns.

There are important branches of human activities where economic growth is not possible: that is, for example, fisheries. Consumption of natural fish products is limited by the rate of their recovery in nature, which is achieved by the mechanism of international quotas. Lack of such regulations could result in transient economic growth, but would ultimately lead to collapse of the entire industry when the fish base is depleted. For a different reason, economic growth is equally not possible based on criminal activities like selling drugs or human organs. Were such activities encouraged, as are other economic activities, this could lead to transient "economic growth" but then to the physical collapse of the population. Where this is understood, people are taking measures against such activities.


Raw timber lines a port in Gabon. Photo by: Rhett A. Butler.
Raw timber lines a port in Gabon. Photo by: Rhett A. Butler.
The case with the forestry industry is less akin to fishery but more akin to drug and human organ selling. Humanity needs a large territory of natural, intact, undisturbed forests to run the hydrological cycle on land. This strict environmental criterion is incompatible with the criterion of "sustainability" applied in modern forestry, when trees are in the best case cut at the rate at which they regrow and when the majority of trees are cut when they are 50 years of age. Conceptually, this could be compared to growing human beings for organs and killing them when they are, say, fifteen years of age. Such an "economic activity" could be "sustainable" and "profitable" for some, but one cannot expect civilization based on such "economics" to be stable and give birth to Shakespeares, Mozarts, Einsteins etc. Human beings grown for organs cannot live a normal human life, they cannot work creatively or develop. Likewise, trees grown for timber cannot perform their environmental function and stabilize the climate: only a natural ecosystem with a full suite of all the necessary biological species can do this.

In other words, society must urgently take the course of gradually shrinking the forestry industry. Destruction of natural forest ecosystems is a crime against humanity and will be increasingly perceived as such as new knowledge accumulates, environmental literacy increases, and ethical standards change accordingly. Such radical changes have happened in human history: slavery, once perceived as economically prudent and otherwise "normal," was abolished.

We must emphasize that the responsibility for the current situation, where natural forests are being destroyed, rests on all the people of Earth rather than with the forestry industry alone. We are all consumers of timber products. Because many livelihoods depend directly on forest exploitation today, large-scale programs are needed to gradually change the professional occupation of these people, to slow down the forestry industry and ultimately radically minimize their economic scope. In the meantime, government grants should support research aimed at finding new ways of wrapping things without paper or any other tree-derived product.

2. Governments should remember that natural forest recovery takes many decades and even hundreds of years, before the biotic pump acquires its full power. It is much easier to protect forests than to re-grow them. For example, tree planting in China has nothing to do with forest restoration; it is doomed to fail. To completely restore a degraded ecological communities is as difficult as cloning a mammoth in an elephant egg cell. Ecosystem medicine and health care have not yet developed as a science. In the meantime, we should urgently conserve all that we have now.

3. Efforts should be coordinated to protect both boreal and tropical forests. In countries with strong democracy society is more efficient at achieving nature conservation goals. It becomes possible for society to mitigate the negative environmental impact of even large-scale development projects aimed at resource extraction from yet widening areas. For example, in Canada the implementation of Plan Nord aimed at a massive intensification of resource extraction in Quebec was forced by people to include conservation of 50 percent of the affected territory, including a vast area with boreal forests, in an undisturbed state. This positive experience should be studied and shared among nations.

4. In an overpopulated world forests and the environment cannot be saved. Family planning is the main strategic tool to conserve forests and restore environmental sustainability.



Related articles

Revolutionary new theory overturns modern meteorology with claim that forests move rain

(04/01/2009) Two Russian scientists, Victor Gorshkov and Anastassia Makarieva of the St. Petersburg Nuclear Physics, have published a revolutionary theory that turns modern meteorology on its head, positing that forests—and their capacity for condensation—are actually the main driver of winds rather than temperature. While this model has widespread implications for numerous sciences, none of them are larger than the importance of conserving forests, which are shown to be crucial to 'pumping' precipitation from one place to another. The theory explains, among other mysteries, why deforestation around coastal regions tends to lead to drying in the interior.


Bad feedback loop: climate change diminishing Canadian forest's carbon sink

(01/30/2012) Climate change, in the form of rising temperatures and less precipitation, is shrinking the carbon sink of western Canada's forest, according to a new study released today in the Proceedings of the National Academy of Sciences (PNAS). Tree mortality and a general loss of biomass has cut the carbon storage capacity of Canada's boreal forests by around 7.28 million tons of carbon annually, equal to nearly 4 percent of Canada's total yearly carbon emissions.


Droughts could push parts of Africa back into famine

(12/19/2011) Drought and erratic rains could lead to further food scarcities in Africa warns the United Nations World Food Program (WFP). The WFP singles out South Sudan, the world's newest nation, and Niger as nations of particular concern. Earlier this year famine killed scores of people, including an estimated 30,000 children, in Somalia.


Is the Russian Forest Code a warning for Brazil?

(12/19/2011) Brazil, which last week moved to reform its Forest Code, may find lessons in Russia's revision of its forest law in 2007, say a pair of Russian scientists. The Brazilian Senate last week passed a bill that would relax some of forest provisions imposed on landowners. Environmentalists blasted the move, arguing that the new Forest Code — provided it is not vetoed by Brazilian President Dilma Rousseff next year — could undermine the country's progress in reducing deforestation.


Evidence mounts that Maya did themselves in through deforestation

(12/08/2011) Researchers have garnered further evidence for a smoking gun behind the fall of the great Maya civilization: deforestation. At the American Geophysical Union (AGU) conference, climatologist Ben Cook presented recent research showing how the destruction of rainforests by the Mayan ultimately led to declines in precipitation and possibly civilization-rocking droughts. While the idea that the Maya may have committed ecological-suicide through deforestation has been widely discussed, including in Jared Diamond's popular book Collapse, Cook's findings add greater weight to the theory.


Converting rainforest to cropland in Africa reduces rainfall

(09/19/2011) Converting West African rainforests into cropland reduces rainforest in adjacent forest areas, reports research published in Geophysical Research Letters.


Chart: US suffers record drought

(08/01/2011) An exceptional drought is still scorching major parts of Texas, New Mexico, Oklahoma, and Louisiana. A new report from the National Drought Mitigation Center finds that over July, nearly 12 percent of the US saw exceptional drought conditions, the highest record since monitoring began a dozen years. Exceptional drought is the worst possible on a 5-scale drought scale.


An undamaged Amazon produces its own clouds and rain

(09/21/2010) Researchers recently traveled to the remote Brazilian Amazon to investigate how clouds are formed and rain falls in an atmosphere unburdened by human-caused pollution. Studying the atmospheric aerosol particles, which impact cloud formation and particles, above a pristine forests, researchers discovered that when left alone the Amazon acts as its own 'bioreactor': clouds and precipitation are produced by the abundance of plant materials.


World failing on every environmental issue: an op-ed for Earth Day

(04/22/2010) The biodiversity crisis, the climate crisis, the deforestation crisis: we are living in an age when environmental issues have moved from regional problems to global ones. A generation or two before ours and one might speak of saving the beauty of Northern California; conserving a single species—say the white rhino—from extinction; or preserving an ecological region like the Amazon. That was a different age. Today we speak of preserving world biodiversity, of saving the 'lungs of the planet', of mitigating global climate change. No longer are humans over-reaching in just one region, but we are overreaching the whole planet, stretching ecological systems to a breaking point. While we are aware of the issues that threaten the well-being of life on this planet, including our own, how are we progressing on solutions?


Drought crippling southwest China, millions without drinking water

(03/22/2010) Over 50 million people are affected by a severe drought in southwest China, according to Xinhua, the nation's state media. The lack of rain and unseasonably high temperatures has also left 16 million people without easy access to drinking water.


Healthy coral reefs produce clouds and precipitation

(03/03/2010) Twenty years of research has led Dr. Graham Jones of Australia's Southern Cross University to discover a startling connection between coral reefs and coastal precipitation. According to Jones, a substance produced by thriving coral reefs seed clouds leading to precipitation in a long-standing natural process that is coming under threat due to climate change.


Decline in fog threatens California's iconic redwood ecosystems

(02/15/2010) A surprising new study finds that during the past century the frequency of fog along California's coast has declined by approximately three hours a day. Published in the Proceedings of the National Academy of Sciences the researchers are concerned that this decrease in fog threatens California's giant redwoods and the unique ecosystem they inhabit.


Air pollution in China reduces rainfall

(08/31/2009) Air pollution in eastern China over the past half century has reduced rainfall and exacerbated the risk of drought and crop failures, reports a study published in the Journal of Geophysical Research.


Massive deforestation in the past decreased rainfall in Asia

(06/25/2009) Between 1700 and 1850 forest cover in India and China plummeted, falling from 40-50 percent of land area to 5-10 percent. Forests were cut for agricultural use across Southeast Asia to feed a growing population, but the changes from forests to crops had unforeseen consequences. A new study published in the Proceedings of the National Academy of Sciences links this deforestation across Southeast Asia with changes in the Asian Monsoon, including significantly decreased rainfall.




CITATION:
Jeremy Hance
mongabay.com (February 01, 2012). New meteorological theory argues that the world's forests are rainmakers. http://news.mongabay.com/2012/0201-hance_interview_bioticpump.html


Tags:
precipitation weather deforestation forests rainforests ecosystem services ecological services Science environmental services Russia indonesia brazil south america asia southeast asia latin america Amazon Deforestation Amazon rainforest Climate Modeling climate change climate science strange tropical forests rainforest destruction rainforest conservation impact of climate change impacts of climate change environment Rainforest deforestation amazon amazon conservation amazon destruction bold and dangerous ideas that may save the world carbon emissions carbon sequestration carbon dioxide ecology global warming mitigation governance green jeremy hance interviews interview plantations rainforest temperatures temperate forests threats to the amazon threats to rainforests threats to the rainforest